لمحة الأعراض الجانبية الضارة لمثبطات الأنزيم ببتايديز الثنائي-4 (ستاجلبتين وسكساجلبتين وفلداجلبتين







Jing Huang, Yuntao Jia, Shusen Sun, Long Meng. Adverse event profiles of dipeptidyl peptidase-4 inhibitors: data mining of the public version of the FDA adverse event reporting system. BMC Pharmacol Toxicol. 2020; 21: 68.

عنوان الدراسة

لمحة الأعراض الجانبية الضارة لمثبطات الأنزيم ببتايديز الثنائي-4 (ستاجلبتين وسكساجلبتين وفلداجلبتين وليناجلبتين): التنقيب عن البيانات للنسخة المعلنة لنظام الإبلاغ عن الأعراض الجانبية الضائرة التابع لإدارة الغذاء والدواء الأمريكية.


الخلفية داء السكري النمط 2 (T2DM) هو الشكل الأكثر شيوعا لمرض السكري. الأدوية الفموية هي الدعامة الأساسية للعلاج الدوائي لـهذا المرض . تُعد مثبطات الإنزيم الأنزيم ببتايديز الثنائي-4 ومنها ستاجلبتين وسكساجلبتين وفلداجلبتين وليناجلبتين إضافة جديدة لطرق العلاج المضادة لمرض السكر وقد تم استخدامها على نطاق واسع وغير مقنن وعشاوائي. لهذه الأدوية هياكل كيميائية مختلفة بشكل كبير الأمر الذي يؤدي إلى اختلافات في خصائصها الحركية الدوائية والدوائية. ليس من الواضح تماما ما إذا كانت هذه الاختلافات قد تؤدي إلى اختلاف الأعراض الجانبية الضارة التي تسببها . اضافة الى ذلك قد تختلف سمات سلامة الأدوية في الممارسة السريرية عن التجارب السريرية المصممة جيدا. لذلك من الضروري استكشاف الأعراض السلبية التي تسببهامثبطات الإنزيم الأنزيم ببتايديز الثنائي-4 في بيئة العالم الحقيقي.تهدف أنظمة الإبلاغ العفويعن الأعراض الجانبيةقواعد بيانات كبيرة للتيقظ الدوائي والتي يمكن استخدامها في تقييمات السلامة بشأن استخدام الأدوية في الممارسة السريرية. تم إنشاء نظام الإبلاغ عن الأحداث الضائرة وهو قاعدة بيانات مفتوحة للمعلومات لخدمة برامج مراقبة ما بعد التسويق الخاصة بإدارة الغذاء والدواء الأمريكية للأدوية والمنتجات العلاجية. يتم تقييم التقارير العفويةعن الأعراض الجانبيةمن خلال خوارزميات الكشف عن الإشارات الكمية حيث تكون الإشارة مؤشرا لقضايا السلامة الحقيقية المحتملة. يعد الكشف عن الإشارات أحد الأدوات الأساسية للتيقظ الدوائي . كشفت دراسات التيقظ الدوائي السابقة عن الارتباط بين أدوية مثبطات الإنزيم الأنزيم ببتايديز الثنائي-4 وبعض الأحداث الضائرة الخاصة.

Background

Type 2 diabetes mellitus (T2DM) is the most common form of diabetes. Oral agents are the mainstay of pharmacological treatment for T2DM. Dipeptidyl peptidase-4 inhibitors (DPP-4is) are a valuable addition to the antidiabetic treatment modalities and have been widely used [1]. DPP-4is, sitagliptin, saxagliptin, linagliptin, vildagliptin, and alogliptin, have significantly different chemical structures, leading to differences in their pharmacokinetic and pharmacodynamic properties. It is not entirely clear if these differences may result in differing safety profiles [2]. The drugs’ safety profiles in clinical practice may differ from clinical trials that have been well-designed [3]. Therefore, it is necessary to explore adverse events (AEs) induced by DPP-4is in a real-world environment.

Spontaneous reporting systems (SRS) of AEs generate large pharmacovigilance databases, which can be used for safety assessments on drug utilization in clinical practice [4]. The FDA Adverse Event Reporting System (FAERS), an open information database, was established to serve the FDA’s post-marketing monitoring programs for drugs and therapeutic products. The AE reports are evaluated through quantitative signal detection algorithms, where a signal is an indicator of possible real safety issues [5]. Signal detection is one of the essential tools of pharmacovigilance [6].

Previous pharmacovigilance studies have revealed the association between DPP-4is and some particular adverse events [79]. To achieve the latest information about the safety profiles of DPP-4is, we queried an international SRS, namely FAERS, to characterize the reporting pattern of DPP-4is and map the entire spectrum of AEs by the pharmacovigilance approach.

الاستنتاجات تمت مراجعة ملفات لمحة الأمان الخاصة بأدوية مثبطات الأنزيم ببتايديز الثنائي-4 ومنها ستاجلبتين (الجانوفيا) وسكساجلبتين (أونكلايزا) وفلداجلبتين (كالفص) وليناجلبتين (نسينا) ( sitagliptin , saxagliptin , linagliptin , vildagliptin) باستخدام نظام الإبلاغ عن الأعراض الجانبية المقدم لإدارة الغذاء والدواء الأمريكية (FDA Adverse Event Reporting System) ومن بين أدوية السكري الأخرى من غير الأنسولين ، وقد لوحظ ارتباط مثبطات الأنزيم ببتايديز الثنائي-4 بزيادة ملحوظة في الإبلاغ عن الأعراض الجانبية المتعلقة بالجهاز الهضمي والتهاب البنكرياس والأورام الخبيثة والإلتهابات والجهاز العضلي الهيكلي والاضطرابات العامة وفرط الحساسية والجلد ، مما يدعم أدلة التجارب السريرية. علاوة على ذلك ، لم يتم الكشف عن إشارة لاعتلال القلب والكسور. النتائج التي توصلت إليها هذه الدراسة تحتاج إلى مزيد من التحقق من الصحة ويجب تفسيرها بحذر ، بالنظر إلى قيود التيقظ الدوائي. ومع ذلك ، بالنسبة للأطباء ، يجب أن يكونوا على دراية بهذه الارتباطات المحتملة ، ويجب أن يؤخذ في الاعتبار الأمراض المصاحبة للمريض وتاريخها والآثار الضارة المحتملة لهذه الأدوية. تحتاج الأبحاث المستقبلية إلى التركيز على مخاوف السلامة وخاصة تطور السرطان والتهاب البنكرياس. أخيرا توفر هذه الدراسة فهماً أفضل لموضوع سلامة هذه الأدوية وأهمية الإلتزام بمبدأ التيقظ الدوائي.

Conclusions

The safety profiles of sitagliptin, saxagliptin, linagliptin, and vildagliptin were reviewed using Adverse Event Reporting System AERs submitted to the FAERS FDA Adverse Event Reporting System (FAERS). Among non-insulin antidiabetics, DPP-4is are associated with higher AEs reporting of the gastrointestinal tract, pancreatitis, malignancies, infection, musculoskeletal system, general disorders, hypersensitivity and skin, corroborating clinical trial evidence. Furthermore, a signal is not detected for cardiopathy and fracture. Our findings need further validation and should be interpreted with caution, given the limitations of the pharmacovigilance. However, for physicians, these possible associations should be aware, and the patient’s comorbidities and history and potential adverse effects of the medicine must be taken into consideration. Future research needs to focus on safety concerns, especially the development of cancer and pancreatitis. Finally, our study provides a better understanding of the safety profiles of DPP-4i in a pharmacovigilance way.

References المصادر

1. White J. Efficacy and safety of incretin based therapies: clinical trial data. J Am Pharm Assoc. 2009;49(Suppl 1):S30–S40. [PubMed] [Google Scholar]
2. Ceriello A, Sportiello L, Rafaniello C, Rossi F. DPP-4 inhibitors: pharmacological differences and their clinical implications. Expert Opin Drug Saf. 2014;13 Suppl 1(S1):S57. [PubMed] [Google Scholar]
3. Kose E, Uno K, Hayashi H. Evaluation of the expression profile of extrapyramidal symptoms due to antipsychotics by data Mining of Japanese Adverse Drug Event Report (JADER) database. Yakugaku Zasshi J Pharm Soc Japan. 2017;137(1):111. [PubMed] [Google Scholar]
4. Sakaeda T, Kadoyama K, Okuno Y. Statin-associated muscular and renal adverse events: data mining of the public version of the FDA adverse event reporting system. PLoS One. 2011;6(12):e28124. [PMC free article] [PubMed] [Google Scholar]
5. Sakaeda T, Kadoyama K, Okuno Y. Adverse event profiles of platinum agents: data mining of the public version of the FDA adverse event reporting system, AERS, and reproducibility of clinical observations. Int J Med Sci. 2011;8(6):487–491. [PMC free article] [PubMed] [Google Scholar]
6. Singhal S, Chakraborty B. Safety signal detection for platinum compounds in Canadian spontaneous adverse event reports. Int J Pharm Pharmaceut Sci. 2015;7(6):405–411. [Google Scholar]
7. Carnovale C, Mazhar F, Arzenton E, et al. Bullous pemphigoid induced by dipeptidyl peptidase-4 (DPP-4) inhibitors: a pharmacovigilance-pharmacodynamic/pharmacokinetic assessment through an analysis of the vigibase® Expert Opin Drug Saf. 2019;18(11):1099–1108. [PubMed] [Google Scholar]
8. Fadini GP, Sarangdhar M, Avogaro A. Pharmacovigilance evaluation of the association between DPP-4 inhibitors and heart failure: stimulated reporting and moderation by drug interactions. Diabetes Therapy. 2018;9(2):851–861. [PMC free article] [PubMed] [Google Scholar]
9. Faillie JL, Babai S, Crepin S, et al. Pancreatitis associated with the use of GLP-1 analogs and DPP-4 inhibitors: a case/non-case study from the French Pharmacovigilance database. Acta Diabetol. 2014;51(3):491–497. [PubMed] [Google Scholar]
10. Robin X. pROC: an open-source package for R and S+ to analyze and compare ROC curves. Bmc Bioinformatics. 2011;12(1):1–8. [PMC free article] [PubMed] [Google Scholar]
11. Böhm R, Von HL, Herdegen T, et al. OpenVigil FDA - Inspection of U.S. American Adverse Drug events pharmacovigilance data and novel clinical applications. PloS one. 2016;11(6):e0157753. [PMC free article] [PubMed] [Google Scholar]
12. H-h J, X-w T, Dong Z, Song L, Y-t J. Adverse event profiles of anti-CTLA-4 and anti-PD-1 monoclonal antibodies alone or in combination: analysis of spontaneous reports submitted to FAERS. Clin Drug Invest. 2019;39(3):319–330. [PubMed] [Google Scholar]
13. Siafis S, Papazisis G. Detecting a potential safety signal of antidepressants and type 2 diabetes: a pharmacovigilance-pharmacodynamic study. Br J Clin Pharmacol. 2018;84(10):2405–2414. [PMC free article] [PubMed] [Google Scholar]
14. Zorych I, Madigan D, Ryan P, Bate A. Disproportionality methods for pharmacovigilance in longitudinal observational databases. Stat Methods Med Res. 2013;22(1):39–56. [PubMed] [Google Scholar]
15. Grundmark B, Holmberg L, Garmo H, Zethelius B. Reducing the noise in signal detection of adverse drug reactions by standardizing the background: a pilot study on analyses of proportional reporting ratios-by-therapeutic area. Eur J Clin Pharmacol. 2014;70(5):627–635. [PMC free article] [PubMed] [Google Scholar]
16. Raschi E, Parisotto M, Forcesi E, et al. Adverse events with sodium-glucose co-transporter-2 inhibitors: a global analysis of international spontaneous reporting systems. Nutr Metab Cardiovasc Dis. 2017;27(12):1098–107. [PubMed]
17. Bate A, Evans SJW. Quantitative signal detection using spontaneous ADR reporting. Pharmacoepidemiol Drug Saf. 2010;18(6):427–436. [PubMed] [Google Scholar]
18. Yazbeck R, Howarth GS, Abbott CA. Dipeptidyl peptidase inhibitors, an emerging drug class for inflammatory disease? Trends Pharmacol Sci. 2009;30(11):600–607. [PubMed] [Google Scholar]
19. Rosenstock J, Brazg R, Andryuk PJ, Lu K, Stein P. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin added to ongoing pioglitazone therapy in patients with type 2 diabetes: a 24-week, multicenter, randomized, double-blind, placebo-controlled, parallel-group study. Clin Ther. 2006;28(10):1556–1568. [PubMed] [Google Scholar]
20. Tella SH, Rendell MS. DPP-4 inhibitors: focus on safety. Expert Opin Drug Saf. 2015;14(1):127–140. [PubMed] [Google Scholar]
21. Fass AD, Gershman JA. Efficacy and safety of dipeptidyl peptidase-4 inhibitors in combination with metformin. Adv Ther. 2013;30(4):337–353. [PubMed] [Google Scholar]
22. Barnett AH. Linagliptin for the treatment of type 2 diabetes mellitus: a drug safety evaluation. Expert Opin Drug Saf. 2015;14(1):149–159. [PubMed] [Google Scholar]
23. Richard KR, Shelburne JS, Kirk JK. Tolerability of dipeptidyl peptidase-4 inhibitors: a review. Clin Ther. 2011;33(11):1609–1629. [PubMed] [Google Scholar]
24. Raz I, Hanefeld M, Xu L, Caria C, Williams-Herman D, Khatami H. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin as monotherapy in patients with type 2 diabetes mellitus. Diabetologia. 2006;49(11):2564–2571. [PubMed] [Google Scholar]
25. Singh AK. Dipeptidyl peptidase-4 inhibitors: novel mechanism of actions. Indian J Endocrinol Metab. 2014;18(6):753. [PMC free article] [PubMed] [Google Scholar]
26. Egan AG, Blind E, Dunder K, et al. Pancreatic safety of incretin-based drugs--FDA and EMA assessment. N Engl J Med. 2014;370(9):794–797. [PubMed] [Google Scholar]
27. Suarez EA, Koro CE, Christian JB, Spector AD, Araujo AB, Abraham S. Incretin-mimetic therapies and pancreatic disease: a review of observational data. Curr Med Res Opin. 2014;30(12):2471–2481. [PubMed] [Google Scholar]
28. Chen S, Zhao E, Li W, Wang J. Association between dipeptidyl peptidase-4 inhibitor drugs and risk of acute pancreatitis: a meta-analysis. Medicine. 2017;96(48):e8952. [PMC free article] [PubMed] [Google Scholar]
29. Singh S, Chang HY, Richards TM, Weiner JP, Clark JM, Segal JB. Glucagonlike peptide 1-based therapies and risk of hospitalization for acute pancreatitis in type 2 diabetes mellitus: a population-based matched case-control study. JAMA Intern Med. 2013;173(7):534–539. [PubMed] [Google Scholar]
30. Pariente A, Gregoire F, Fourrier-Reglat A, Haramburu F, Moore N. Impact of safety alerts on measures of disproportionality in spontaneous reporting databases: the notoriety bias. Drug Saf. 2007;30(10):891–898. [PubMed] [Google Scholar]
31. Reinhold D, Goihl A, Wrenger S, et al. Role of dipeptidyl peptidase IV (DP IV)-like enzymes in T lymphocyte activation: investigations in DP IV/CD26-knockout mice. Clin Chem Lab Med. 2009;47(3):268–274. [PubMed] [Google Scholar]
32. Jain R. Utility of Saxagliptin in the treatment of type 2 diabetes: review of efficacy and safety. Adv Ther. 2015;32(11):1065–1084. [PMC free article] [PubMed] [Google Scholar]
33. Willemen MJ, Mantel-Teeuwisse AK, Straus SM, Meyboom RH, Egberts TC, Leufkens HG. Use of dipeptidyl peptidase-4 inhibitors and the reporting of infections: a disproportionality analysis in the World Health Organization VigiBase. Diabetes Care. 2011;34(2):369–374. [PMC free article] [PubMed] [Google Scholar]
34. Amori RE, Lau J, Pittas AG. Efficacy and safety of incretin therapy in type 2 diabetes: systematic review and meta-analysis. JAMA. 2007;298(2):194–206. [PubMed] [Google Scholar]
35. Richter B, Bandeira-Echtler E, Bergerhoff K, Lerch CL. Dipeptidyl peptidase-4 (DPP-4) inhibitors for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2008;2:CD006739. [PubMed] [Google Scholar]
36. Lehrke M, Marx N, Patel S, et al. Safety and tolerability of Linagliptin in patients with type 2 diabetes: a comprehensive pooled analysis of 22 placebo-controlled studies. Clin Ther. 2014;36(8):1130–1146. [PubMed] [Google Scholar]
37. Williams-Herman D, Engel SS, Round E, et al. Safety and tolerability of sitagliptin in clinical studies: a pooled analysis of data from 10,246 patients with type 2 diabetes. BMC Endocr Disord. 2010;10:7. [PMC free article] [PubMed] [Google Scholar]
38. Tarapués M, Cereza G, Figueras A. Association of musculoskeletal complaints and gliptin use: review of spontaneous reports. Pharmacoepidemiol Drug Saf. 2013;22(10):1115–1118. [PubMed] [Google Scholar]
39. Guieu R, Fenouillet E, Devaux C, et al. CD26 modulates nociception in mice via its dipeptidyl-peptidase IV activity. Behav Brain Res. 2006;166(2):230–235. [PubMed] [Google Scholar]
40. Starup-Linde J, Frost M, Vestergaard P, Abrahamsen B. Epidemiology of fractures in diabetes. Calcif Tissue Int. 2017;100(2):109–121. [PubMed] [Google Scholar]
41. Mosenzon O, Wei C, Davidson J, et al. Incidence of fractures in patients with type 2 diabetes in the SAVOR-TIMI 53 trial. Diabetes Care. 2015;38(11):2142–2150. [PubMed] [Google Scholar]
42. Monami M, Dicembrini I, Antenore A, Mannucci E. Dipeptidyl peptidase-4 inhibitors and bone fractures: a meta-analysis of randomized clinical trials. Diabetes Care. 2011;34(11):2474–2476. [PMC free article] [PubMed] [Google Scholar]
43. Matthews DR, Tsapas A. Four decades of uncertainty: landmark trials in glycaemic control and cardiovascular outcome in type 2 diabetes. Diab Vasc Dis Res. 2008;5(3):216–218. [PubMed] [Google Scholar]
44. Goldfine AB. Assessing the cardiovascular safety of diabetes therapies. N Engl J Med. 2008;359(11):1092–1095. [PubMed] [Google Scholar]
45. Baksh SN, McAdams-DeMarco M, Segal JB, Alexander GC. Cardiovascular safety signals with dipeptidyl peptidase-4 inhibitors: a disproportionality analysis among high-risk patients. Pharmacoepidemiol Drug Saf. 2018;27(6):660–667. [PMC free article] [PubMed] [Google Scholar]
46. Scirica BM, Bhatt DL, Braunwald E, et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med. 2013;369(14):1317–1326. [PubMed] [Google Scholar]
47. Toh S, Hampp C, Reichman ME, et al. Risk for hospitalized heart failure among new users of Saxagliptin, Sitagliptin, and other Antihyperglycemic drugs: a retrospective cohort study. Ann Intern Med. 2016;164(11):705–714. [PMC free article] [PubMed] [Google Scholar]
48. McGuire DK, Van de Werf F, Armstrong PW, et al. Association between Sitagliptin use and heart failure hospitalization and related outcomes in type 2 diabetes mellitus: secondary analysis of a randomized clinical trial. JAMA Cardiol. 2016;1(2):126–135. [PubMed] [Google Scholar]
49. Anderluh M, Kocic G, Tomovic K, Kocic R, Deljanin-Ilic M, Smelcerovic A. Cross-talk between the dipeptidyl peptidase-4 and stromal cell-derived factor-1 in stem cell homing and myocardial repair: potential impact of dipeptidyl peptidase-4 inhibitors. Pharmacol Ther. 2016;167:100–107. [PubMed] [Google Scholar]
50. Karagiannis T, Boura P, Tsapas A. Safety of dipeptidyl peptidase 4 inhibitors: a perspective review. Ther Adv Drug Saf. 2014;5(3):138–146. [PMC free article] [PubMed] [Google Scholar]
51. Bate A, Evans SJ. Quantitative signal detection using spontaneous ADR reporting. Pharmacoepidemiol Drug Saf. 2009;18(6):427. [PubMed] [Google Scholar]
52. Nomura K, Takahashi K, Hinomura Y, et al. Effect of database profile variation on drug safety assessment: an analysis of spontaneous adverse event reports of Japanese cases. Drug Design Dev Ther. 2015;9:3031. [PMC free article] [PubMed] [Google Scholar]